Prompt-responsive Object Retrieval with Memory-augmented Student-Teacher Learning

Abstract

Building models responsive to input prompts represents a transformative shift in machine learning. This paradigm holds significant potential for robotics problems, such as targeted manipulation amidst clutter. In this work, we present a novel approach to combine promptable foundation models with reinforcement learning (RL), enabling robots to perform dexterous manipulation tasks in a prompt-responsive manner. Existing methods struggle to link high-level commands with fine-grained dexterous control. We address this gap with a memory-augmented student-teacher learning framework. We use the Segment-Anything 2 (SAM 2) model as a perception backbone to infer an object of interest from user prompts. While detections are imperfect, their temporal sequence provides rich information for implicit state estimation by memory-augmented models. Our approach successfully learns prompt-responsive policies, demonstrated in picking objects from cluttered scenes.

Video
We use reinforcement learning to train interactive grasping policies. Their knowledge is distilled to real-world deployable policies that are promptable via language or points by using SAM-2 as their interface.